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Abstract 

 Coordination is a fundamental component of multi-robot teams. However, coordination is 

challenging in urban search and rescue (USAR) operations due to limited communication. This 

thesis provides an overview of multi-robot coordination research and implements an algorithm 

capable of efficiently coordinating a team of robots exploring a space despite limited 

communication and danger to robots. First, existing research in the field of multi-robot 

coordination and exploration was analyzed to find an algorithm appropriate to USAR scenarios. 

This algorithm was then implemented and shown to be effective at coordinating exploration in 

USAR environments, regardless of communication levels. This implementation will serve as a 

benchmark with which to compare future multi-robot USAR exploration research.   
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1  Introduction 

1.1  Background 

Urban search and rescue (USAR) is a type of rescue operation requiring locating and 

extracting victims from collapsed structures [1]. Robots have been used to improve the efficacy 

of search and rescue operations while limiting the danger to human crisis managers [2, 3]. One 

use of robots is deploying a large team to map the area, detect hazards, and locate victims so 

human crisis managers can safely and efficiently extract them from the rubble [2]. 

Multi-robot teams are more effective and robust than single robots but coordinating 

groups of robots remains a challenge [2]. There are two main approaches to multi-robot 

coordination: centralized and decentralized architectures [4]. Centralized architecture involves 

using a central agent that has access to all the robots’ information and environment data to make 

decisions and plan globally optimal search plans. However, this is difficult in USAR 

environments due to unreliable communication [22], ineffectual scaling to larger teams [4], and 

vulnerability to issues in the central agent [4]. In contrast, decentralized control allows each 

robot to plan its course. Coordination with other robots is done through observation and limited 

communication [4]. Decentralized methods are more adaptable to dynamic situations and robust 

to failure but lead to suboptimal solutions [4].  

 

1.2  Objectives 

Decentralized multi-robot coordination seeks to minimize overlapping efforts between 

robots to find the most optimal plan for finding victims despite lack of information. For scenarios 

like USAR where communication is unreliable [22], robots may need to infer the progress and 

goals of teammates from their current position and trajectory. USAR presents unique challenges 

for multi-robot coordination due to unreliable communication [22], high danger to robots [2], 

and the time pressure related to finding victims [2]. 

This thesis will review relevant research done in the field of decentralized multi-robot 

coordination, determine a suitable algorithm that can be applied to USAR, and evaluate its 

efficacy when applied to USAR. By measuring the efficacy of current research when applied to 

USAR, I hope to tackle the challenges of decentralized coordination in USAR and determine 

robust metrics to improve future algorithms. The candidate solution chosen to be implemented 

will serve as a baseline against which future multi-robot USAR work can be compared.  
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1.3  Approach 

I will perform a literature review of relevant methods, focusing on decentralized multi-

robot task allocation, decentralized multi-robot exploration, and implicit coordination. The most 

appropriate solution will be selected, and a measure of the efficacy of the algorithm will be 

determined. Finally, the algorithm will be applied to simulated teams of robots in cluttered 

environments similar to those found in USAR. 
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2  Literature Review 

Various approaches to multi-robot exploration and task-allocation were reviewed to 

determine an appropriate candidate solution that will be applied to USAR. Each solution makes 

differing assumptions about the robot team, the availability of communication, and the specific 

task to be performed. The core assumption made for USAR is the lack of reliable communication 

between robots due to debris and radio channels being overwhelmed by emergency personnel 

[22]. Communication may be intermittent, have limited range, or be completely obstructed by 

walls and rubble [20, 22]. The candidate solution chosen should not only function when 

communication is unreliable but should be optimally suited for USAR operations. 

To find such a solution, the field was divided using two categories: the type of decision-

making architecture (centralized, decentralized, or hybrid) and the coordination strategy (explicit 

or implicit). Centralized architectures have a single agent that decides the goals of each robot in 

the team, compared to decentralized architectures where each robot decides its own goals [4]. 

Decentralized architectures are more robust to failure and unreliable communication [4] but must 

coordinate goals between robots to avoid duplicating work. This coordination can be explicit 

where the goals are clearly defined and the robots agree on how to distribute them [41], or 

implicit where the robots predict the goals of other robots and individually choose how to work 

together most efficiently [41]. Explicit coordination typically requires more communication as 

robots must negotiate and settle on a task allocation rather than sharing minimal information in 

implicit coordination strategies [41].   

Since USAR operations suffer from unreliable communication [22] and a high risk of 

physical damage to robots [2], decentralized architectures are necessary. Implicit coordination 

strategies are preferred to further reduce dependence on communication. However, the entire 

state of the field was analyzed to better understand current research and possible solutions.  

This literature review first discusses the differences in decision-making architectures in 

section 2.1 Decision-Making Architectures. This discussion is broad since centralized 

architectures are not appropriate to USAR. Then, in sections 2.2 Explicit Coordination 

strategies and 2.3 Implicit Coordination Strategies, specific algorithms for decentralized 

coordination are considered. Finally, in section 2.4 Candidate Solution a specific algorithm is 

chosen and discussed. This algorithm will be implemented in USAR scenarios to be used as a 

baseline for comparing the effectiveness of multi-robot decentralized USAR algorithms.  
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2.1  Decision-Making Architectures 

 There are two main approaches to coordinating teams of robots: centralized and 

decentralized. Additionally, several approaches fall somewhere in between and have been 

labelled hybrid architectures. There is a spectrum from completely centralized to completely 

decentralized, and due to unreliable communication in USAR operations, candidate solutions 

must be highly decentralized.  

 

Figure 2.1: The three different multi-robot architectures. Decentralized (left) where each robot 

is equal and communicates with neighbours, centralized (centre) where all robots communicate 

to a central agent, and a hierarchical hybrid architecture (right) where the team is split into 

smaller centralized teams. 

 

2.1.1  Centralized 

Centralized architecture involves using a central agent, either a static computer or one of 

the robots in the team, to make decisions for all the robots in the team [4]. This central agent has 

access to all the robots’ information and all available environment data. Since the central agent 

has access to all available data, it is capable of planning globally optimal solutions [4]. 

Centralized architecture has been applied to various problems such as task allocation [17] and 

path planning [19]. 

Centralized architectures generally suffer from ineffectual scaling to larger teams and 

vulnerability to issues in the central agent [4]. This is compounded in a USAR scenario due to 
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unreliable communication [22] and increased risk to central agents due to the dangerous 

environment [2]. If each robot in the team sends all sensor readings to the central agent, it would 

require prohibitively large bandwidth for a large team. Additionally, acting upon all the data 

from a large team would require very large computational resources. Lag in communications or 

disruptions would greatly affect the entire team, freezing it completely when it cannot receive 

orders from the central agent. In USAR environments, communication is very unreliable [22]. 

For these reasons, it is necessary to use methods less reliant on communication and more robust 

to failures in robot team members. 

 

2.1.2  Decentralized 

Decentralized control allows each robot to plan its course with adjustments based on 

observation and communication with the other robots [4]. Generally, it involves little direct 

communication between robots, usually only to neighbouring robots. The neighbourhood 

considered varies by algorithm and may also be defined by the range of possible communication, 

as long-range communication may be impossible in situations such as USAR [20, 22].  

Decentralized methods are more adaptable to dynamic situations and robust to failure but lead to 

suboptimal solutions as each agent only has local information [4]. The low reliance on 

communication and robustness to failure make decentralized architectures optimal for USAR.  

Although decentralized architectures do not preclude communication between robots as 

long as each robot plans its course, algorithms relying on heavy use of inter-robot 

communication nullify one of the core benefits of decentralized architectures. In this paper, 

algorithms that require each robot to be connected to every other robot and thus make decisions 

on global information will be considered hybrid architectures, discussed in section 2.1.3 Hybrid 

Architectures.  

Some algorithms, such as [5, 40], use no communication whatsoever. Instead, each robot 

only operates on knowledge that it acquires through interaction with the environment. This 

makes the system very robust as a failure in any robot as it will not affect the team. However, 

work may be duplicated. Systems that communicate to adjacent robots to jointly plan actions [6, 

7, 8] are considered decentralized as they only require communication with adjacent robots. 

However, in large teams where there may be many adjacent robots, this also may lead to 

excessive communication and computationally expensive decision-making. Research such as [9, 
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41] has shown that mixing explicit and implicit coordination leads to equally good performance 

at a greatly reduced communication load. Finally, many systems are flexible in that they can 

work with any level of communication and remain effective by making use of implicit 

coordination [11, 25].  

 

2.1.3  Hybrid 

Decentralized solutions that require global coordination or select sub-team leaders to 

coordinate tasks will be considered hybrid architecture between centralized and decentralized.  

Architectures that divide the robot team into smaller centralized teams each with a team 

leader are classic examples of hybrid architectures. These are called hierarchical architectures as 

there are two or more levels of authority in the team [4]. Hierarchical architectures have been 

applied to USAR as they are less communication expensive than centralized architectures [20]. 

 Decentralized architectures that require complete communication between the whole 

team, such as [12, 13, 21], will also be considered hybrid architectures. Some algorithms are 

specifically designed to maintain this global communication network even when communication 

is unreliable [14, 15]. Other algorithms get around communication constraints by having all the 

robots periodically meet and jointly plan all goals [16]. Although the robots are still making 

decisions themselves, the main benefits of reduced communication loads and decentralized 

decision-making no longer apply. Additionally, significant errors in any one robot will affect the 

decisions of all other robots, not just adjacent ones. Due to these reasons, algorithms that require 

global communication or planning with the entire team will be considered hybrid architectures.  

 

2.2  Explicit Coordination 

When two or more robots need to coordinate in a decentralized architecture, there are two 

main approaches: explicit and implicit. Explicit coordination involves communicating directly 

with other robots and deciding on tasks together [41]. Implicit coordination involves inferring the 

plans of other robots either through limited communication or observation [41].  

Although explicit coordination involves communication, in general communication is far 

more limited than what is necessary for centralized architectures since it is still a decentralized 

approach [4]. Usually, it only involves local communication. Some notable exceptions require 

global communication and thus should be considered hybrid architectures [12, 13]. However, for 
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USAR it is preferable to have limited communication, making implicit coordination 

advantageous as it requires significantly less communication [41]. 

 

2.2.1  Negotiation 

 Explicit coordination relies on every robot agreeing to the tasks itself and others in the 

vicinity will do. This is most clearly solved using negotiation, where the robots calculate the 

reward and cost of each task and distribute them such that the cost for the team is minimized. 

This method approaches global optimality but may require large calculation and communication 

loads as the cost for each robot to perform the tasks must be calculated [7]. A classic example of 

multi-robot exploration, the M+ algorithm [6], reduces the number of tasks by only considering 

optimality in the next time increment.  

 

2.2.2 Market Strategies 

 To reduce communication and calculation loads of complete consensus and optimality 

analysis, various strategies based on market economics have been developed. These include 

auction or bidding strategies [8, 18], and trade approaches [7]. In these strategies, the robots 

often take on different roles, sometimes acting as auctioneers and sometimes as bidders. Since 

these methods create hierarchies, albeit temporarily, and thus rely on decisions made by other 

robots they can be considered hybrid architectures.  

 In Gerkey and Mataric’s well-known auction method [18], an auctioneer robot would 

declare a task and the metric determining the fitness of a robot to achieve that task. Each robot 

that can feasibly accomplish the task calculates its fitness and provides it as a ‘bid’ to the 

auctioneer. Finally, the auctioneer decides on the winner and monitors their progress with the 

task. The approach improves upon previous research by communicating anonymously and 

assuming imperfect communication. However, it still requires high communication [7]. Trade 

approaches [7] attempt to lower communication requirements by having buyers ask for a task to 

be allocated to them rather than waiting for auctions, and sellers deciding winners based on 

messages received. Buyers choose desired tasks greedily based on the easiest task to perform [7].  

 

 

 



8 
 

2.3  Implicit Coordination 

 Implicit coordination involves inferring the goal of neighbouring robots through limited 

communication or observation [41]. Rather than explicitly dividing goals between each other, 

which may be time-consuming and require large communication and computational loads, each 

robot predicts what the others may do leading to emergent behaviour [41]. This is far more 

extendable to large groups of robots but is often used for less sophisticated tasks [41]. This is the 

most decentralized approach to multi-robot coordination.  

 

2.3.1  Broadcast Position and Trajectory 

 Implicit coordination uses information on the actions and locations of other robots to 

predict their goals, and thus choose appropriate tasks. The simplest information that a robot can 

gather to determine the goals of other robots is their position and the map of what they’ve 

explored. From this, a robot can determine possible goals and avoid exploring areas that have 

already been mapped. Each robot will determine its goals by taking into account the goals of 

others in varying ways, such as by targeting only frontiers that it can target more efficiently than 

any other robot [27, 28], or decreasing rewards or potential around other robots [25, 31] to 

spread out the team. 

 Many algorithms using this approach have each robot share a great deal of data about 

their position, path, and area explored. Algorithms such as [11] directly share odometry and 

sensor readings, while [23, 24, 25] only share current position and local maps. These approaches 

are designed to work even when communication completely drops by inferring the position of 

robots that cannot be directly contacted.  

 

2.3.2  Best Fit Task 

Algorithms may decide their goal by deciding which frontier or goal they are more 

capable than other robots of achieving. The seminal work by Yamauchi [27] presents an 

approach where robots share perceptual information to build shared maps and thus attempt to 

distribute frontiers for exploration. However, this implicit coordination approach allows for 

frontiers to be explored again by other robots [28]. [28] improves upon frontier allocation by 

distributing robots optimally throughout the map rather than simply towards the closest frontier. 

[26] explores a similar idea for generic tasks rather than frontiers. This is useful as USAR is not 
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purely an exploration task, but also involves tasks of identifying and interacting with victims. 

However, calculating the best fit task to complete at each timestep is computationally expensive. 

 

2.3.3  Approximation Methods 

Rather than directly calculating the optimal task or frontier for each robot to pursue, 

many algorithms use an approximation to spread out the team. These methods benefit from less 

calculation and increased reactivity. 

 A simple approach is to repel robots away from other robots and attract robots to desired 

locations, such as frontiers. Algorithms such as [30] do this directly using potential fields 

overlaid on the environment, allowing the robot to ‘flow’ to low potentials near frontiers and far 

from other robots. [25] makes use of Markov decision processes solved using the value iteration 

algorithm [36], adding positive rewards to frontiers and negative rewards to areas around other 

robots. Finally, [29] makes use of a particle filter to coordinate a multi-robot search of a target by 

having each robot share random particles, allowing each robot to create local particle 

distributions of the target’s location. These methods do not directly calculate the optimal task to 

perform but instead use an appropriate surrogate problem, such as maximizing reward or 

minimizing potential.  

 Knowledge of how the other robots will act is a necessity of implicit coordination. Many 

of the algorithms analyzed work only on homogenous teams that assume identical robots with 

the same algorithm governing their decision-making. However, multi-robot teams may be 

heterogeneous teams composed of very different robots, such as drones scanning the area and 

rovers locating victims. These heterogeneous teams may require more complex coordination 

algorithms [4], such as [9] which learns the behaviour of each member of the team. After 

learning a model of the behaviour of each member, it can plan based on what its teammates are 

likely to do.  

 

2.3.4  Biomimicry 

A less common approach to coordination is biomimicry, usually mimicking swarm insect 

communication. These methods usually do not use any direct electronic communication but 

communicate in different ways. [31] proposes using a communication system based on the 

‘waggle dance’ of bees, who communicate with each other based on intricate movements in the 
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air. The paper describes various messages that can be communicated by UAVs by creating 

shapes in the air. This is useful for teams of UAVs that need to share information but cannot 

communicate directly. Other approaches use chemicals [32] to create trails that other robots can 

use for various purposes, similar to how ants navigate paths and leave messages using 

pheromones. Coordination through changing the environment or leaving messages in the 

environment is known as stigmergy [31, 32].  

However, biomimicry is limited in its general application as these movements and 

implicit communication strategies can only communicate simple pre-programmed messages 

rather than maps, odometry information, or sensory information. Also, they typically require 

additional sensing capabilities, such as computer vision to determine waggle dance movements 

or chemical sensors to detect artificial pheromones. 

 

2.4 Candidate Solution 

2.4.1 Choosing a Candidate Solution 

 From all the approaches considered, one algorithm needs to be implemented to serve as a 

baseline for future USAR research. Ideally, the algorithm would be optimally suited to USAR by 

having the following characteristics:  

1. Designed for unreliable communication, such as intermittent loss of communication, no 

long-range communication, or communication being blocked by obstacles and walls. 

However, short-range line-of-sight communication is assumed to function at least 

intermittently.  

2. Robust to hardware failure in any member of the robot team. Due to the perilous nature 

of USAR, robots are likely to get physically damaged or destroyed during the operation 

[2]. The team must continue functioning even when one or more members of the team 

have been physically damaged.  

 These criteria naturally lead to highly decentralized solutions that use implicit 

coordination, reducing communication to a minimum and being highly robust to failure. Despite 

using implicit coordination, many of these algorithms still share significant amounts of 

information in the form of perceptual and odometry information [11, 23, 27, 28]. However, 

several solutions [24, 25] only share position and local maps.  
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 Additionally, more practical criteria need to be examined. The chosen algorithm needs to 

apply to USAR, and thus should be mainly an exploration algorithm with some ability to perform 

tasks. This is compared to algorithms such as [26, 29] which are purely search and retrieval 

algorithms. Also, the algorithm should be simple and clearly explained, yet demonstrated to be 

highly effective.  

 Considering all these criteria, [25] was chosen to be implemented as the candidate 

solution. This paper, titled “Coordinated Multi-Robot Exploration Under Communication 

Constraints Using Decentralized Markov Decision Processes” is a fully decentralized algorithm 

that only shares local maps and positions. When a robot cannot communicate with another robot, 

it calculates a probability distribution of the other robot’s position. Additionally, the algorithm 

was developed over several years and has several papers written on it by the same authors [10, 

25, 33, 34, 35] culminating in a refined algorithm in 2015. The papers are clear and allow for re-

implementing the algorithm. Finally, the algorithm won 2nd place in the CAROTTE Challenge, a 

challenge testing single and multi-robot autonomous exploration under communication 

constraints [10]. This algorithm’s low communication, use of implicit coordination, clarity, and 

demonstrated effectiveness make it an optimal candidate. Additionally, it can be easily modified 

to prioritize different tasks such as identifying or interacting with victims, similarly to what was 

done in [35].  

The algorithm described in [10, 25, 33, 34, 35], which will be called the “candidate 

solution” for the remainder of this document, is a Markov decision process planning algorithm 

applied to exploration. The first version of this algorithm was explored in [10], which considered 

only the single robot case and discussed possible extensions to multi-robot exploration. [33] laid 

out the algorithm for multi-robot search, and [34] demonstrated its capabilities. [25] further 

documents its communication infrastructure. Finally, [35] discusses optimally photographing the 

environment, which is part of the CAROTTE Challenge this algorithm was designed for. 

However, this is not a requirement of USAR, so this extension will not be used.  

 

2.4.2  Single Robot Exploration 

 The first paper written for the candidate solution [10] implements single robot 

exploration, which forms the basis of the later papers on multi-robot exploration. To fully 

understand the complete multi-robot algorithm, it is necessary to first consider only single robot 
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exploration.  

The algorithm works by creating an occupancy grid representation of the environment as 

it explores, where every cell is either free space, an obstacle, or unknown. This is referred to as 

the pixel layer or pixel map, as it can be represented as an image where every pixel is a cell. 

Many different sensors can be used for this purpose, but the paper uses a laser rangefinder. The 

algorithm was developed to be effective with cheap robots and sensors, such as a single laser 

rangefinder, rather than higher-end cameras or other expensive sensors [10]. This is doubly 

important for multi-robot USAR as robots are likely to be damaged or destroyed during the 

operation [2], and thus it may be financially infeasible to use teams of expensive robots.  

 A hexagon grid representation of the map is created based on the pixel map. This 

overlays a hexagon grid on the pixel map and groups pixels in each hexagon such that each 

hexagon is labelled free, occupied, or unknown, just like the pixel map. While the sensors update 

the pixel map, decisions are made on the hexagon grid. This is because the hexagon grid reduces 

the state space of the problem by grouping pixels. Additionally, rather than defining orientation 

as a continuous variable, the robot’s orientation can be constrained to be one of the six directions 

of the hexagon, further reducing the state space of the problem.  

 

Figure 2.2: The real world is scanned and converted into a pixel map which simultaneously 

updates the hexagon decision layer. [10] 

  



13 
 

As the pixel and hexagon layers are updated, revealing free and occupied areas in the 

environment, rewards are propagated through the hexagon layer. A reward signifies how much 

useful information the algorithm believes can be gained by travelling towards that hexagon. 

Rewards are an integral part of the Markov decision process, as each robot will explore the 

environment by seeking to maximize its reward. Rewards are propagated around borders 

between free hexagons and unknown hexagons, as this is where the robot will uncover more of 

the environment. Only free hexagons can have rewards because it may not be safe to enter an 

unknown hexagon as it may be occupied, causing a collision.  

 

Figure 2.3: For every unknown (grey) hexagon bordering a free (white) hexagon, rewards 

propagate to free hexagons within a certain radius. Occupied (black) hexagons block this 

propagation. White arrows symbolize impossible propagations while black arrows symbolize 

successful propagations, and the red stars represent the rewards. [10] 

 To move between hexagons, the actions the robot can take must first be defined. The six 

orientations of a hexagon simplify this as it constrains the robot to only rotate between those six 

orientations. Other than rotating, the robot can move forward from one hexagon to an adjacent 

one, and any combination of those actions. Some robots may be able to do other actions, such as 

strafing, but this is not considered in this research as this is less common. However, it is assumed 

the robot can rotate in place. The set of actions can be changed to account for different robot 

capabilities.  
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Figure 2.4: Set of possible robot actions. ‘Forward right’ and ‘forward left’ can be further 

decomposed into simpler actions. [10] 

 Each robot decides the next action by solving a Markov decision process (MDP). For a 

single robot, this MDP is defined by the tuple {𝑆, 𝐴, 𝑇, 𝑅} where: 

● 𝑆 is the set of all possible states, where each state is a position and orientation. A position 

is defined as a hexagon and the orientation is one of the six orientations of the hexagon. 

The position represents the centre of the robot, and the orientation is defined with respect 

to this centre hexagon. 

● 𝐴 is the set of all actions, as defined in Figure 2.4.  

● 𝑇 is the transition function, defining the likelihood of being in state 𝑠′ after performing 

action 𝑎 from state 𝑠. This can be simplified by assuming it is deterministic: impossible if 

the robot would hit an obstacle and certain otherwise. However, the robot would no 

longer consider the possibility that its actions may fail, such as by slipping.  

● 𝑅 is the reward function, determining the reward at each state as defined in Figure 2.3. To 

simplify the problem, the reward is dependent only on position, not on orientation. [10] 
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Once the MDP has been completely defined, it can be solved. The candidate solution 

solves it using the value iteration method [36], but MDPs can be solved in many ways. Rather 

than calculating a completely optimal solution across the entire map, which would be 

computationally expensive, the value iteration algorithm only considers the next 𝐻 actions, 

where 𝐻 is called the horizon [10]. The horizon can be changed during operation if desired. It 

can be increased to improve accuracy and reach distant rewards or decreased to reduce 

computation. 

The core calculation for the value iteration algorithm can be seen below, where the true 

value of each state is calculated. Once these values have been calculated, the robot simply 

chooses the action that moves it to the adjacent state with the highest value [10].  

  𝑉(𝑠)  =  𝑅𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠)  +  𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉(𝑠′)
𝑆𝐻
𝑠′     (1) 

Where:  

- 𝑉(𝑠) is the true value of state 𝑠 

- 𝑅𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠) is the reward at state 𝑠 

- 𝛾 is the discount factor, which weighs the value of future events 

- 𝑆𝐻 are all the states reachable in the next 𝐻 actions 

- 𝑇(𝑠, 𝑎, 𝑠′) is the probability of transitioning from state 𝑠 to state 𝑠′ after doing action 𝑎 

 

Figure 2.5: Final pixel layer (left) and hexagon layer (right) after complete exploration. White 

represents free space, black represents occupied space, and grey represents unknown space. 

White space outside of the room has been observed through partially open doors. [10] 
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2.4.3  Multi-Robot Coordination 

 The candidate solution was designed for the CAROTTE Challenge, which only allows 

for limited bandwidth and temporary communication loss [25]. The solution was designed with 

these limitations. The robots communicate their local maps which are merged to create a shared 

map, preventing duplicated work. Additionally, robots share their positions but not their goals or 

trajectories. Each robot must infer the actions of the others using the shared map and the current 

and past positions of the other robots [25].  

Assuming perfect communication, the MDP each robot solves remains largely the same 

except for the reward function. To encourage robots to not target areas that other robots can 

explore more effectively, a repulsive MDP is defined. This repulsive MDP sets a positive reward 

in the state where other robots currently are, and no reward anywhere else. Then, by solving this 

MDP, the robot generates the repulsive value of each state within the horizon. Finally, the reward 

at each state of the original MDP is modified by subtracting the value calculated in the repulsive 

MDP. In this way, the robot is attracted to areas of high information gain as before and repulsed 

by other robots. The balance between these two reward mechanisms can be tuned by changing 

the amount of reward given in the repulsive MDP [25].  

  𝑉𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖)  =  𝑅𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖)  +  𝛾 ∑ 𝑇(𝑠𝑖, 𝑎, 𝑠′)𝑉𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠′)
𝑆𝐻
𝑠′  (2) 

Where:  

- 𝑉𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖) is the repulsive value at state 𝑠𝑖 for robot 𝑖 

- 𝑅𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖) is the repulsive reward for robot 𝑖, which is positive at the state where any 

other robot currently is and zero everywhere else 

 

 Using 𝑉𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖) and 𝑅𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑖), the final reward function is calculated as: 

       𝑅𝑖(𝑠𝑖)  =  𝑅𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑖) - 𝑉𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖)      (3) 

The final MDP assuming perfect communication is: 

  𝑉𝑖(𝑠𝑖)  =  𝑅𝑖(𝑠𝑖)  +  𝛾 ∑ 𝑇(𝑠𝑖, 𝑎, 𝑠′)𝑉𝑖(𝑠′)
𝑆𝐻
𝑠′      (4) 

However, this only works when there are no errors communicating with distant robots. If 

each robot has communicated with the other robots at least once, it can use their previous 
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position to estimate their current position. If a robot has never communicated with another robot, 

it cannot coordinate with it as it does not know it exists. Given the last known position of another 

robot, the robot must make use of distributed value functions (DVFs) to estimate the value each 

robot places on each state and the probability it is currently at each state. DVFs were introduced 

to distributed robotics by [38]. Each robot can estimate another robot’s value function 

‘emphatically’ because the algorithm assumes a homogeneous team, and thus each robot uses the 

same algorithm [25]. This could potentially be extended to heterogeneous teams but will not be 

necessary for this investigation.  

 It is computationally expensive to calculate the value functions of all the other robots and 

the probability they have moved to every state. This can be simplified by only considering robots 

in one’s neighbourhood. However, this will sacrifice accuracy. The approach of calculating 

every other robots’ value function is termed the “Pessimistic” DVF while only considering 

neighbouring robots is the “Optimistic” DVF. The general form of the value function is: 

𝑉𝑖(𝑠𝑖)  =  𝑅𝑖(𝑠𝑖)  +  𝛾 ∑ [𝑇(𝑠𝑖, 𝑎, 𝑠′)𝑉𝑖(𝑠′)
𝑆𝐻
𝑠′  −  ∑ 𝑓𝑖𝑗𝑃𝑟(𝑠′ | 𝑠𝑗 , 𝛥𝑡𝑗)𝑉𝑗(𝑠′)]𝑁

𝑗≠𝑖   (5) 

Where: 

- 𝑁 is the number of robots 

- 𝑓𝑖𝑗 is a weighing factor on how important the value function of robot 𝑗 is to robot 𝑖. This 

can be set to 0 for robots that are not neighbours for the Optimistic approach.  

- 𝑠𝑗 is the last known state of robot 𝑗 

- 𝛥𝑡𝑗 is the amount of time since robot 𝑗 has communicated its location 

- 𝑃𝑟(𝑠′ | 𝑠𝑗, 𝛥𝑡𝑗) is the probability robot 𝑗 explores or occupies state 𝑠′ given that 𝛥𝑡𝑗 time 

ago it was observed at state 𝑠𝑗  

- 𝑉𝑗(𝑠) is the value function of robot 𝑗 

 

This DVF approach works even for perfect communication by setting 𝛥𝑡𝑗 to zero since 

every robot communicates with every other robot at each iteration. In fact, this is the final 

approach used by [25] for all levels of communication. 𝑃𝑟(𝑠′|𝑠𝑗 , 𝛥𝑡𝑗 = 0) =  𝑃𝑟(𝑠′ | 𝑠𝑗) thus 

represents the probability robot 𝑗 chooses to soon explore state 𝑠′ given it is currently located at 

state 𝑠𝑗. 
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Calculating 𝑃𝑟(𝑠′ | 𝑠𝑗, 𝛥𝑡𝑗) is complex but can be achieved by determining the probability 

the robot takes a trajectory from the previous state to the new state. This calculation is done in 

the candidate solution by using Voronoi diagrams, which significantly reduce the number of 

possible trajectories. Voronoi diagrams are also used in the final algorithm to plan safe paths 

through the environment (see Figure 2.6). This is described below [25]:  

𝑃𝑟(𝑠′ | 𝑠𝑗, 𝛥𝑡𝑗)  =  𝜂 ∑ 𝑃𝑟(𝜏, 𝛥𝑡𝑗) 
𝑇𝑟𝑎𝑗(𝑠𝑗,𝑠′)

𝜏      (6) 

Where:  

- 𝜂 is a normalizing constant 

- 𝑇𝑟𝑎𝑗(𝑠𝑗 , 𝑠′) is the set of trajectories from 𝑠𝑗 to 𝑠′ 

- 𝑃𝑟(𝜏, 𝛥𝑡𝑗) is the probability robot 𝑗 follows trajectory 𝜏 in time 𝛥𝑡𝑗 

 

Figure 2.6: A Voronoi diagram in the hexagon layer generated in the candidate solution. Black 

curves are Voronoi edges and white points are Voronoi nodes. [33] 

 These papers only considered intermittent communication loss, but USAR operations 

usually suffer from generally unreliable communication with little to no long-range 

communication [22]. This algorithm works regardless of whether communication loss is 

complete, intermittent, or limited in range and thus can be applied to USAR. 

 Additionally, this algorithm does not cover local coordination, such as when two robots 

are trying to fit through a small doorway. Although the robots are repelled from one another, 

occasions may occur when robots are forced into close contact, and this will require a different 

coordination technique. [25] employs a different algorithm ([39]) for this situation but this will 

not be implemented in this thesis.  
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2.5  Conclusion 

 The field of multi-robot coordination spans a wide variety of approaches that make 

varying assumptions about the availability of communication and computation. Centralized 

architectures can optimally perform a task or explore as all available information is used by a 

central computer to plan the actions of all agents. However, it is computationally expensive and 

communication heavy, and very susceptible to failure [4]. Decentralized architectures allow each 

agent to perform its decision-making, but in doing so reach sub-optimal solutions. However, 

decentralized architectures are generally more robust, allow for larger teams, and have lower 

requirements for computation and communication [4]. USAR suffers from unreliable 

communication [22] and high danger to robots [2], making decentralized architectures ideal.  

 Decentralized robots must share information and coordinate to perform tasks and reduce 

duplicated work. This coordination can be explicit, where the robots agree on task allocation, or 

implicit, where the robots use limited information to predict the goals of the other robots. 

Implicit communication generally uses far less communication as only essential information 

needs to be shared [41]. Additionally, it is more robust to complete communication loss as a 

robot can infer the paths of other robots and allocate new tasks to itself without communicating 

directly with other robots [41]. For these reasons, implicit coordination is preferred for USAR.  

 A candidate solution was chosen from decentralized architectures that make use of 

implicit coordination. Various practical considerations, such as applicability to USAR, 

demonstrated effectiveness, and reproducibility, were also considered when choosing a candidate 

solution to implement. The algorithm “Coordinated Multi-Robot Exploration Under 

Communication Constraints Using Decentralized Markov Decision Processes” [25] was chosen 

as it satisfies these criteria and is flexible to modifications for USAR. The algorithm uses a 

planning approach based on solving a Markov decision process to move robots toward frontiers 

while avoiding areas other robots may explore. If communication is lost with a neighbouring 

robot, it will infer its current position from its last known position. This algorithm will be 

implemented in simulated USAR scenarios and used as a baseline for future research into multi-

robot USAR.  
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3  Design and Implementation 

The algorithm is implemented in a grid world in Python. This is because the candidate 

solution is a coordination algorithm concerned with high-level tasks such as exploration targets. 

It is not concerned with low-level control such as path planning, odometry, or velocity control. 

As a result, a simple grid representing obstacles and free space suffices. Python was chosen due 

to its portability to the Robot Operating System (ROS) and the simplicity for prototyping. In the 

future, this implementation may be ported to a complete 3D simulation in ROS by replacing the 

inputs to the algorithm with ROS topics. This is further explored in section 4.5.5 Moving to 

ROS. However, a complete simulation in ROS is not the purpose of this thesis.  

 

3.1 Pixel Map and Hexagon Grid Layers 

 The candidate solution splits the environment into three layers: the real world, the pixel 

layer, and the hexagon grid layer (see Figure 2.2). The real world in this project is simply an 

image of the map. It is then converted from a grayscale image into a pixel layer where every 

pixel is either free, occupied, or unknown. The pixel map is divided into larger hexagons 

encompassing many pixels to create the hexagon layer where decisions are made. This 

dramatically reduces the state space of the algorithm and allows for orientation to be defined as 

one of the six orientations of a hexagon. 

  

 Figure 3.1: A pixel map (left) of an office environment taken from [25], and the hexagon 

grid (right) generated from the pixel map. 
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The hexagon grid was defined as a dictionary of custom Hex objects containing the state 

(i.e. free, unknown, or occupied) and other valuable information such as reward. The dictionary 

is indexed by the axial coordinates of the hexagon. Since dictionaries in Python are implemented 

as a hash table, their indexing is theoretically O(1) [44], dramatically reducing computation time 

for the algorithm. Any update to the pixel layer done by scanning the environment immediately 

updates the hexagon layer, changing the states and rewards of hexagons.  

  

3.2 Simulating Rangefinders 

 Once the robot has access to a pixel layer and a hexagon layer, it needs to scan the 

environment to update the pixel layer. The actual implementation of the rangefinder is arbitrary 

as many different rangefinders could be used. For this simulation, the robot perfectly measures 

the distance to the closest object directly in front of it, revealing its field of view when rotating 

from one orientation to the next. This is calculated using Bresenham’s Algorithm [37]. Each scan 

reveals free pixels and obstacle pixels, which are updated in the pixel layer. The pixel layer is 

then used to update the hexagon map.  

  

Figure 3.2: The robot observes the environment as it rotates, uncovering free and occupied 

pixels. The pixel map (left) was generated when the robot did a 300-degree rotation. The 

hexagon grid (right) was then updated. 

 If this algorithm is moved to ROS, a pre-built mapping module can be used to replace 

this section. This is outlined in sections 4.5.3 Realistic Mapping and 4.5.5 Moving to ROS. 
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3.3 Propagating Rewards 

 As the robot scans its environment, rewards need to be propagated near frontiers between 

free spaces and unknown spaces, as seen in Figure 2.3. This reward propagation is done 

whenever the hexagon layer is updated. This is done by clearing the rewards from the entire map 

and then checking every unknown hexagon. If the hexagon has a neighbour within the desired 

radius that is free, and there is a clear (unoccupied) path between the unknown hexagon and the 

free hexagon, then a static reward is set on the free hexagon. The reward has been chosen to be 

the same regardless of how far the free hexagon is from the unknown hexagon (as long as it is 

within the desired radius) to follow the algorithm. Since the frontiers retreat as the robot 

approaches because the robot observes the unknown hexagons, it is not necessary for the robot to 

directly reach the frontier hexagons. Rather, the robot should be encouraged to look in that 

direction. Due to this, the robots rarely ever reach any rewards, but this does not affect the 

algorithm.  

 

Figure 3.3: Rewards (green) are propagated in the free hexagons near unknown hexagons, to a 

radius of two hexagons. The intensity of the green indicates how much reward there is at that 

location. Higher rewards signal more information can be gained by approaching that location.  

  

3.4 Implementing the Markov Decision Process 

 The initial paper for the candidate solution outlines the MDP for single robot exploration 

[10], described in section 2.4.2 Singe Robot Exploration. To solve the MDP, first the states, 

actions, transition function, and reward function are defined. The hexagon grid defined in section 
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3.1 Pixel Map and Hexagon Grid Layers defines all the states, as a state is simply the hexagon 

the robot is occupying and the orientation it is facing on that hexagon. The actions are defined as 

moving forward, turning left, or turning right. The transition function is defined with regards to a 

variable called 𝑛𝑜𝑖𝑠𝑒. The desired action is performed with a certainty of 1 − 𝑛𝑜𝑖𝑠𝑒, and a 

random action is performed with a probability of 𝑛𝑜𝑖𝑠𝑒. This makes the robot more cautious 

when near undesirable areas such as walls or other robots. However, it was found that 

introducing this noise into the MDP significantly slowed the convergence of the algorithm. Thus, 

for testing the noise was set to zero. For real operations, where avoiding collisions is vital, the 

noise should be increased to reflect the actual probability of failure. Since in this simulation the 

robot’s actions never failed, increasing 𝑛𝑜𝑖𝑠𝑒 did not improve the accuracy of the algorithm. The 

transition function may be updated for larger robots in section 4.5.1 Simulating Large Robots, 

as the robot will take up more than one hexagon. Finally, the reward function has been 

accomplished in section 3.3 Propagating Rewards. Thus, the MDP has been defined and can be 

solved using the value iteration algorithm [36].  

 The value iteration algorithm is guaranteed to converge to the optimal solution given 

enough time [36]. The convergence speed and accuracy rely on two tuneable parameters, the 

discount factor 𝛾, and the horizon 𝐻. When a policy is being computed with value iteration, only 

up to 𝐻 future actions are considered to reduce computation. The discount factor weights the 

importance of future events as compared to maximizing the reward in the present. In experiments 

in [10], the discount factor was found to have little effect on the algorithm. However, the horizon 

has a large effect on the behaviour and runtime of the algorithm. A smaller horizon reduces 

computation but also may reduce the optimality of the algorithm as it only considers its 

immediate surroundings. Additionally, if there are no rewards within 𝐻 actions of the robot, it 

will become stuck as it will ignore distant rewards. In [10], it was found that there are usually 

many rewards surrounding the robot, and 𝐻 can be kept small. It is dynamically increased if the 

robot ever finds itself stuck too far away from any rewards.  

 By testing it was found that having a small horizon (set to a distance of 20 hexagons) 

worked well. However, if no rewards are within that horizon then it must expands not only to 

consider the nearest reward but also the entire path towards the nearest reward. Expanding the 

horizon to accommodate the path was necessary since the value iteration algorithm iteratively 

calculates the value of intermediate states, so if the path is not included in the horizon the value 
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from a reward hexagon will not be propagated back to the robot’s current state. Also, it was 

found that a static discount factor was unable to perform well both when rewards were close and 

when rewards were very distant. If rewards were very distant and the discount factor was low the 

value iteration algorithm would not propagate rewards back to the robot since the value of the 

states would converge to zero before reaching the robot. However, if the discount factor was too 

high it would disregard small rewards around it, greatly affecting total mission time as the robot 

needed to make a second pass around the entire environment to pick up small rewards that had 

been ignored. In practice, it was found that increasing the discount factor proportionally to the 

length of the path to the nearest reward allowed the robot to operate well during the entire 

exploration while still being able to tune the robot’s greediness as desired. This is further 

explained in section 4.4.1 Tuning Parameters. 

 The results of the single robot exploration algorithm can be seen below. It efficiently 

explores the map by disregarding small rewards (such as corners that have not been fully 

observed) in favour of searching the majority of the space quickly. The value function can be 

seen below in green, where a darker green indicates a higher value. The value function only 

extends to a horizon of 20 hexagons, unless increased to reach distant rewards.  

 

 
Figure 3.4: Single robot exploration using the MDP. The robot is represented by the yellow 

hexagon and the blue dot indicates the front of the robot. Value is in green, with darker green 

indicating a higher value. 
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3.5 Multi-Robot Coordination  

 To coordinate with the team, each robot communicates its position and map, merges in 

received maps, and uses the received positions of other robots to estimate their future 

destinations. The DVF formulation from section 2.4.3 Multi-Robot Exploration (equation 5) 

was used for both perfect and imperfect communication. Thus, the value function of every 

known robot in the horizon of the current robot is calculated. This along with the probability that 

the other robot will explore a state given its last known position and the time elapsed since the 

last communication is used to estimate likely areas the other robot will explore. The repulsive 

MDP formulation is used to calculate the value function of other robots. This value function is 

calculated while the robots are communicating but is not updated when the robots stop 

communicating as it is unknown how the value function of the other robot will evolve. A 

visualization of the prediction calculation is included in Figure 3.6. The entire process for multi-

robot coordination for a given robot is given in Figure 3.5.  

 

Figure 3.5: Process for a given robot to coordinate with its teammates. 
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To estimate the probability the robot is targeting or currently occupying neighbouring 

states, the paper utilizes Voronoi diagrams. However, this calculation of probability was not 

described in detail by the candidate solution [25] and assumes robots move along Voronoi edges, 

which is not the case for our solution. Instead, a novel probability calculation was developed. 

The probability that a robot is occupying or targeting a state is zero if that state is farther than a 

certain distance from the last known location. This distance, called the exploration horizon, 

grows proportionally to the time since the robots last communicated. Thus, if the robots have not 

communicated in a long time, the area that the other robot may explore is far larger. The 

probability the other robot is occupying or targeting a state within the exploration horizon is 

inversely proportional to the distance between the last known location and the state. Also, the 

probability is inversely proportional to the number of free states within the exploration horizon. 

This is because if there are very few states within the exploration horizon (such as if the other 

robot was in a narrow corridor), the likelihood that the other robot is in any of these few states is 

far higher than if the robot was last seen in a large open space. 

   

Figure 3.6: Visualizing the prediction step. (left) the estimated value function for the rightmost 

robot. (centre) the probability of the robot exploring neighboring states. (right) the value 

function multiplied with the probability function. 

 Now that each robot has estimated the value function of every other robot, multiplied it 

by the probability they are going to explore their neighbours, and subtracted this from their value 

functions, they are ready to explore in a coordinated fashion. The coordinated exploration can be 

seen below where the robots clearly avoid one another. Positive valued hexagons are green 

where darker green indicates higher value. Negative valued hexagons are red where darker red 

indicates a more negative value. Each robot places strong negative values around the other robot 

as long as it is within the horizon considered by the value iteration algorithm.  
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Figure 3.7: Multi-robot exploration using the MDP, from the perspective of one of the robots. 

The robots are represented by the yellow hexagons and the blue dots indicate the front of the 

robots. Positive value is in green, and negative value in red. Darker green indicates more value, 

and darker red indicates a more negative value. 

 

3.6 Designing USAR Scenarios 

  Now that the robots coordinate effectively, a scenario that resembles USAR needs to be 

created. Depending on the robot’s functionality, such as being able to identify victims using 

computer vision, the algorithm itself could be updated. This is explored in section 4.5.6 

Adapting the Algorithm for USAR Scenarios. For this thesis, only the exploration task is 

considered.  

To create an exploration scenario that reflects the challenges of USAR, two of the aspects 

of USAR need to be simulated: 

1. A cluttered map with many potential exploration trajectories that collide, making 

coordination vital to efficiently explore and avoid collisions.  

2. Communication constraints that mimic real-world USAR communication failure.  

To create a cluttered map, maps used in USAR research were analyzed. However, these 
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maps were rarely as cluttered and real USAR scenarios. Many papers, including [25], utilized 

simple office layouts with all furniture and objects removed. A cluttered map was designed by 

editing one of the office layouts from [25], removing walls and adding rubble. By removing 

walls, the number of trajectories that can be used to move between any two points was increased, 

as the original map was very divided between two corridors with little chance of two robots 

colliding. This, along with the added clutter, created a more realistic scenario for USAR. 

Additionally, added obstacles decreased communication when communication was blocked by 

obstacles, increasing the difficulty of the scenario.  

 

Figure 3.8: (left) a map from [25], (right) modified map to be more cluttered and have 

more possible collisions. 

Communication failures happen in a multitude of ways in real USAR scenarios. In [25] 

they test communication failure by having all communication go down for a set amount of time 

at set intervals. Two other methods of communication failure are communication being blocked 

by obstacles and communication only extending to a certain radius. All three of these have been 

implemented.  

 

3.7 Greedy Approach 

 To properly measure the efficacy of the candidate solution, a naïve baseline algorithm 

was implemented. A simple greedy approach was programmed where each robot moves directly 

towards the closest reward. First, the nearest reward is found using a breadth-first search. Then, a 
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single action is done in pursuit of this desired new state, either moving forward or rotating. After 

each action, the environment is scanned again, and the desired path is recalculated. This is 

extended to multi-robot exploration by allowing the robots to transmit their maps and merge in 

received maps, similarly to the candidate solution. However, other than map merging there is no 

change to the base algorithm in the case of multi-robot exploration; the greedy approach will 

simply move the robots towards the nearest reward as before. This can be seen below.  

 

 

Figure 3.9: Single robot exploration using the greedy approach where the robot moves towards 

the closest reward. The robot is represented by the yellow hexagon and the blue dot indicates the 

front of the robot. Rewards are in green, with darker green indicating higher reward. 
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4  Results and Discussion 

4.1 Benchmarking Success 

Now that the candidate solution has been completed, the next step is to determine how to 

benchmark success as compared to other algorithms. Metrics for human and robot USAR 

operations were researched. Since this thesis focused on multi-robot exploration and not other 

aspects of USAR, such as assisting victims, metrics related to coordinated exploration in limited 

communication environments were chosen. [25] measures the effectiveness of its algorithm 

based on two metrics: 

1. Total mission time: The time required for the team to completely explore the area. 

2. Cumulated Local Interactions: The cumulated time any two or more robots were within 

one meter of each other. 

Ideally, total mission time is minimized. However, for USAR, due to the time pressure to 

find victims sooner rather than later, it is equally or more important to explore a majority of the 

space early on rather than completing the entire exploration in less time. For example, an 

algorithm that explores 90% of an area far faster than another algorithm but takes longer to reach 

100% may be preferable since victims may become unresponsive if they are not located and 

rescued in a set amount of time (e.g. the first day). For these reasons, not only is total mission 

time measured but the rate of exploration is measured to determine how rapidly each algorithm 

explores. This is measured as a percent of the environment explored per iteration of the 

algorithm. 

Local interactions are undesirable for two reasons. Firstly, it indicates the robots are not 

spreading out and exploring the area as effectively as possible. Ideally, the robots would 

uniformly spread out into the environment and not need to interact closely unless it is necessary, 

such as passing through a single doorway. Secondly, when communication is guaranteed, two 

robots interacting locally can make use of local coordination to prevent collisions. However, 

when communication fails the robots have no way of coordinating, which may cause collisions 

or cause robots to get stuck. These collisions may damage the robots. For these reasons, local 

interactions are inefficient and dangerous. Local interactions are measured as the cumulated 

number of iterations where two or more robots are near each other.  
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4.2 Testing Methodology 

With metrics clearly defined, the algorithm is ready to be tested. Firstly, a testing 

methodology must be defined that will properly test the algorithm’s efficacy and limitations. For 

these tests, several aspects need to be defined: 

1. The number of robots in a team 

2.  The map or maps which the robots will explore 

3. The starting locations on the map 

4. The levels of communication to simulate 

5. The algorithms to compare 

Ideally, a large variety of tests with different parameters would be performed. However, 

due to time restrictions, it was decided to test only with two robots on the cluttered map in Figure 

3.8. More robots increase the computation time significantly because more maps need to be 

merged and value functions estimated per robot on every iteration. Also, each robot computes its 

value function sequentially rather than each robot working in parallel, so additional robots add 

time to each iteration even with no communication. Moreover, to justify larger teams a large map 

would need to be used. Large maps dramatically increase the state space, both increasing the 

amount of time required to compute value functions and the number of iterations required to 

fully explore the environment. Due to this, it was infeasible to test with many robots. To properly 

test larger teams, the code would need to be parallelized as is explored in section 4.5.4 

Parallelization, and a much larger map would need to be employed.  

At first, testing was done with the robots starting at positions uniformly spread 

throughout the environment. However, this was deemed unrealistic as in a USAR operation the 

robots would likely start near each other, not dispersed within a collapsed building. Also, this 

reduced the need for cooperation as robots were already spread out. Instead, the robots all started 

near each other in the ‘lobby’ area of the chosen map. This starting area can be seen in Figure 4.4 

as a green semi-circle. To add a degree of randomness, the robots start in random positions in the 

starting area.   

Communication can fail in a variety of ways in real USAR scenarios, and several of these 

have been programmed. The code can accommodate full communication, no communication, 

communication blocked by obstacles, communication that extends to a certain radius, and 
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intermittent communication, as well as combinations of these. Full communication and no 

communication were tested. However, for testing purposes, the only communication failure that 

was tested was communication being blocked by obstacles. This was chosen as it realistically 

replicates short-range communication methods being blocked by concrete and rebar, a common 

difficulty in USAR [22]. Additionally, due to how cluttered the testing environment in Figure 3.8 

is, the robots communicate infrequently if communication is blocked by obstacles. Thus, this 

method of limiting communication presents a more challenging communication failure than the 

other communication failure methods and produces representative results of the efficacy of the 

algorithm in communication limited environments.  

Finally, this algorithm is meant to serve as a benchmark against which to compare future 

multi-robot exploration algorithms. Ideally, it would be tested against a variety of other 

algorithms to determine if it is an appropriate choice as a benchmark. However, due to time 

limitations, only the greedy approach was implemented in section 3.7 Greedy Approach. 

Although the algorithm is simple, it is efficient in that no actions are wasted since it always 

moves robots directly towards rewards and very systematically clears areas. The candidate 

solution is less direct and may waste actions avoiding areas with other robots or due to inaccurate 

value functions. To surpass the naïve greedy approach, the candidate solution needs to 

effectively coordinate with the team. Thus, the greedy approach is an appropriate baseline with 

which to compare the candidate solution.  

Additionally, [25] confirms that predicting the locations of other robots when not directly 

communicating with them is effective by testing against a variation of their algorithm. In 

communication limited environments, [25] tests a version of their algorithm where if a robot 

loses communication with a teammate, it assumes it does not exist. In a sense, the robots always 

assume perfect communication and do not account for limited communication by skipping the 

prediction step. This non-predictive variation was also tested in this thesis to determine the 

efficacy of the prediction step when communication is limited.  

 In summary, the tests will use the following parameters: 

1. The team will consist of two robots. 

2. Testing will be done on the cluttered map found in Figure 3.8. 

3. The robots start in random locations of the starting area shown in Figure 4.4. 

4. Tests will happen with full communication, communication blocked by obstacles, 
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and no communication. 

5. The full candidate solution and the greedy approach from section 3.7 Greedy 

Approach will be compared. Additionally, the non-predictive variation of the 

candidate solution will also be tested for the limited communication tests. 

To ensure reproducibility and accurate results, each test will be run 10 times and the 

results will be averaged.  

 

4.3 Results 

 Using the testing methodology above, a total of 70 tests were done: 10 tests per algorithm 

(greedy and candidate solution) per communication method (full communication, limited 

communication, no communication) plus 10 tests for the non-predictive candidate solution 

variation using limited communication. For the results below, Markov Decision Process (MDP) 

refers to the candidate solution, and MDP – Ind is the independent (non-predictive) variation of 

the candidate solution. These results are averaged over 10 trials. 

 

4.3.1  Rate of Exploration 

 

Figure 4.1: The percent explored per iteration for all 7 tests. 
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  For the candidate solution, it is not necessary to communicate on every iteration since the 

two robots communicate when they are close and coordinate to spread out. Since the robots 

spread out very effectively even if communication is blocked by obstacles (as can be seen in 

Figure 4.4), performance does not degrade much when communication is limited. However, for 

the greedy approach, limiting communication counterintuitively bolsters performance. This may 

be because the main failure of the greedy algorithm is that the robots choose to target the same 

reward, and thus move towards the same location and follow the same path for large sections of 

the exploration. This can be seen in Figure 4.5. Breaks in communication allow the robots to de-

sync and pursue different rewards, improving total mission time.  

 More surprising is that when communication is limited, the non-predictive variation of 

the candidate solution performs slightly better than the complete predictive approach. Since the 

difference is relatively minor this may be due to random variation. However, the major caveat in 

this result is that in one run, that was excluded, the non-predictive version got permanently stuck. 

One robot would turn a corner, see the other robot was there, and retreat. However, after 

retreating behind the corner, it would forget the other robot was on the other side. It would 

reattempt to turn the corner. The other robot was similarly stuck. This is a major problem of the 

non-predictive approach. This was the only test that was excluded from the results.  

 Importantly, the candidate solution outperforms the greedy approach regardless of 

communication. Even without any communication, the candidate solution explores far faster than 

the greedy approach, exploring on par with the greedy approach when communication is perfect. 

This is because the value iteration algorithm maximizes the reward according to the discount 

factor and has been tuned to explore more of the environment sooner at the expense of total 

mission time. However, this caused the candidate solution with no communication to have the 

longest total mission time. If desired, the candidate solution can be tuned to be greedier by 

decreasing the discount factor. 

4.3.2 Local Interactions 

The candidate solution explores faster than the greedy approach in every case. However, 

the difference between the ability of the two algorithms to reduce the number of local 

interactions is more drastic, as seen below in Figure 4.2. The candidate solution causes the robots 

to rarely interact outside of the starting area as long as the robots can communicate when they 
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are close to one another. For full communication and limited communication, the greedy 

approach has more than 20 times the number of local interactions as the candidate solution, and 

more than 15 times the non-predictive variation of the candidate solution. Even with no 

communication at all, the candidate solution has less than a third of the local interactions of the 

greedy approach simply because it is inherently less deterministic and thus the robots tend to 

follow one another less.  

 

Figure 4.2: The number of iterations where the two robots are locally interacting for all 7 tests. 

 Interestingly the number of local interactions for the greedy approach is least with full 

communication and highest when communication is limited. This is the opposite result of the 

exploration rate, where the greedy approach with limited communication outperformed the full 

communication scenario. This may be due to the very high variability in the greedy tests; the 

greedy approach performs terribly if the robots synchronize at some point during operation, as 

they begin targeting the same reward and lose all the benefit of having two robots. However, if 

the robots never synchronize, the greedy approach performs similarly to the candidate solution. 

Since the greedy approach has extremely high variability compared to the consistency of the 

candidate solution, the conflicting results relating to the greedy algorithm with full and limited 

communication may be due to chance. The variability in the results is further explored in the 
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next section, 4.4.3 Variability.  

More tests would have to be performed to confirm these results more precisely, but it is 

clear from these results that local interactions are dramatically reduced when using the candidate 

solution as compared to the greedy approach. This is further visualized by observing sample 

trajectories for the approaches in section 4.3.4 Analyzing Trajectories.  

 

4.3.3 Variability 

  

Figure 4.3: Standard deviation of both cumulated number of local interactions and total mission 

time for all 7 tests. 

 Generally, the greedy approach had far more variability in terms of the number of local 

interactions and total mission time compared to the candidate solution. As can be seen above in 

Figure 4.3, the candidate solution was far more consistent in the number of local interactions 

than the greedy approach, especially with full and limited communication. Also, the candidate 

solution was more consistent than the greedy approach with full and limited communication in 

terms of total mission time but surprisingly had more variation when there was no 

communication. This may be because the worst-case mission runtime of the greedy approach is 

bounded by greedy single robot exploration, which only requires one pass through the 

environment. However, the worst-case runtime for the single robot candidate solution involves 
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passing through the environment twice since it may need to return to every area to collect small 

rewards that were previously ignored. Due to this, the variability in the no communication case 

of the candidate solution is very high.  

 

4.3.4 Analyzing Trajectories 

  To better understand the results above, the trajectories of the robots were plotted for 

random runs of each test. Some indicative trajectories are below.  

  

Figure 4.4: Trajectories for the candidate solution. (top left) Full communication. (top right) 

Limited communication. (bottom) No communication. 

 As can be seen in the sample trajectories for the candidate solution in both full and 

limited communication, it very effectively moves the robots away from each other. The only 

local interaction occurs at the beginning of the trajectory in the starting area. The non-predictive 

variation results in similar trajectories. However, in the case of no communication, the robots 
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have overlapping trajectories that cause them to locally interact on many occasions. Even these 

overlapping trajectories are more varied than the nearly identical trajectories of the greedy robots 

when they become synchronized, as can be seen in Figure 4.5.  

 

Figure 4.5: Trajectories for the greedy approach. (top left) Full communication. (top right) 

Limited communication. (bottom) No communication. 

 The greedy approach sometimes explores very efficiently, such as in the full 

communication example above. However, the robots often become synchronized such as in the 

limited communication example and follow nearly identical trajectories. Due to this, the greedy 

approach has very high variability regardless of communication. In the no communication 

example, the robots merely chose similar routes since the exploration of one does not affect the 

other and their maps are not being merged. However, the no communication tests have the 

highest variability in number of local interactions and total mission time since the performance 

of the algorithm is completely dependent on starting locations.  
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4.4  Limitations 

 The candidate solution has been shown to effectively increase exploration rate and reduce 

local interactions drastically regardless of communication. Additionally, it accomplishes these 

results more consistently than the greedy approach. However, it has significant limitations that 

require increased effort to resolve. The algorithm needs to be tuned sufficiently well that it 

explores consistently without getting stuck. Additionally, the algorithm’s computation needs to 

be limited such that it is tractable, but the value function needs to be sufficiently accurate to 

guarantee effective exploration. These two limitations are explored below.  

 

4.4.1 Tuning Parameters 

 The candidate solution has many tuneable parameters which need to be chosen carefully 

to ensure success. Incorrectly tuning these parameters lead to the robots becoming stuck, either 

because the value function at their location was too flat and thus the robots did not move or 

because the robots blocked each others’ path and could not coordinate how to move past each 

other. Several of these problems were fixed by automatic tuning methods. A list of tuneable 

parameters, their effects, and any automatic tuning methods are described below. Additionally, 

local coordination methods described in section 4.5.2 Local Coordination would assist when 

robots need to move around each other assuming they can communicate.  

1. Radius of Rewards: This is the hexagon radius to which rewards are propagated. As can 

be seen in Figure 3.3 it was chosen to be 2. A larger radius of reward propagation may 

allow the robot to find rewards faster as whenever it enters a hexagon with rewards it 

pauses its main algorithm and instead turns to scan the relevant unknown hexagons. This 

was not tested and likely depends on the size of the overall map.  

2. Weight of Rewards: The amount of reward that is propagated is irrelevant in the single 

robot case, as only the ratio between rewards matters. However, in the multi-robot case, 

the balance between positive rewards and negative rewards around other robots needs to 

be tuned. Three sources of rewards need to be tuned: the positive rewards near frontiers 

(𝑅𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑖)) in equation 1, the negative rewards (𝑅𝑖,𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑠𝑖)) used to estimate 

the value functions of other robots in equation 4, and the weighting of other robots (𝑓𝑖𝑗) 

in the DVF formulation of equation 5. It was found that, regardless of tuning, when 
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rewards were few or far the negative rewards overpowered the positive rewards, causing 

the robots to ignore rewards. This was balanced by making sure the positive rewards 

were scaled to always be more than twice the cumulated value of negative rewards, 

which completely prevented the robots from getting stuck.   

3. Free Hexagon Balance: In [10], a hexagon is considered free if the ratio between free 

and unknown pixels in that hexagon is greater than a threshold 𝑇𝑟. The smaller this ratio, 

the more optimistic the algorithm is that a partially explored hexagon is truly free. This 

speeds up exploration but occasionally causes the robot to collide with walls and 

produces less accurate maps.  

4. Discount Factor: The discount factor controls how highly the robots weigh the 

importance of future events. A small discount factor makes the robot more greedily 

search for close rewards, while a discount factor near 1 makes the robot consider distant 

rewards more highly. As described in section 3.4 Implementing the Markov Decision 

Process, the discount factor needs to increase as the path length to the nearest reward 

increases. The discount factor was set according to the following equation:  

𝛾 =  1 −  80/𝑚𝑎𝑥(20, 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ𝑇𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑅𝑒𝑤𝑎𝑟𝑑)2   (7) 

Using this equation, the discount factor is set to 0.8 when rewards are close, but as 

rewards become very far the discount factor approaches 1. This solved the issue of the 

robots getting stuck due to the value function becoming flat very far from rewards. 

5. Noise: Noise controls the probability that a robot’s action will fail and instead a different 

random action will be performed. It was found that having any noise greatly slowed the 

computation of the value function, and thus for testing noise was set to zero. For real 

operation, it would need to be set to a realistic value that reflects the real possibility that 

certain actions will fail. For example, if it is known that forward movement often fails 

due to a sandy floor, it should be reflected in the transition function. This will likely 

involve a more complex formulation of the transition function than a single noise value 

for all actions.  

6. Computation Parameters: Several parameters balance accurately computing the value 

function with computation time. These include the maximum number of iterations used in 

calculating the value function, the convergence criteria, the horizon 𝐻 described in 
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section 3.4 Implementing the Markov Decision Process, and the exploration horizon to 

consider when predicting the future destinations of other robots as described in section 

3.5 Multi-Robot Coordination. These had to be significantly limited to make testing 

possible within the time limit, but the algorithm’s performance was not significantly 

hindered. For larger maps, higher noise, or more robots, it may be important to drastically 

change these parameters as more computation will be necessary to accurately estimate the 

value function. However, if the code is parallelized, as described in section 4.5.4 

Parallelization, the code may run fast enough that limiting accuracy will no longer be 

necessary.   

 

4.4.2 Computational Cost 

 

Figure 4.6: Computation time per iteration of the algorithm for all 7 tests. 

 The candidate solution is more computationally expensive than simpler methods, such as 

the greedy approach. When fully communicating, the candidate solution takes almost 6 times 

more time per iteration than the greedy approach. This decreases significantly when 

communication is limited because the algorithm does not require recalculating the value function 

of neighbouring robots as often. The difference in computation time between the full candidate 
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solution and the non-predictive variation is very minor, demonstrating that the additional step of 

prediction is computationally inexpensive.  

 When implemented on real robots, several factors would change the computational 

complexity of the candidate solution. Firstly, the computation time reported in Figure 4.6 was 

determined when the robots are operating sequentially and with no parallelization. On real 

robots, the computation would be split between robots and different aspects of the algorithm 

would be parallelized.  This is discussed in section 4.4.4 Parallelization. This should drastically 

reduce the computation time and make the algorithm more robust to larger teams as each robot 

would calculate its value function simultaneously rather than sequentially. However, larger 

teams would also mean that each robot needs to estimate the value function of many robots and 

merge in the maps of many robots, significantly increasing the computation time. Also, the 

addition of noise in the model significantly slows down convergence when calculating the value 

function, as discussed in section 4.4.1 Tuning Parameters. For efficient use of this algorithm 

when applied to large teams in large environments, it may be necessary to use a programming 

language that can execute far faster, such as C++.  

 

4.5 Future Work 

4.5.1 Simulating Large Robots 

 Most robots are not sufficiently small to fit inside the hexagons. [10] advises on using 

hexagons that are smaller than half the size of a doorway, approximately 15cm in diameter. This 

is because if two hexagons are large enough to cover a doorway and the edges of the hexagons 

overlap with the door frame it will cause both hexagons to become occupied, and thus the 

doorway will appear like a solid wall. In general, this means robots will typically occupy several 

hexagons. The robot used in the candidate solution covers 18 hexagons (see Figure 4.1).  

 Larger robots increase the risk of colliding with obstacles and walls. To account for this, 

the transition function defined in section 3.4 Implementing the Markov Decision Process 

needs to be modified. For a single hexagon robot, the transition function only checks the robot 

moved to an adjacent free hexagon. For a larger robot, it must consider that the entire area of the 

robot is free as it moves. To accomplish this, a robot mask is introduced, defined as the hexagons 

that contain the robot. If any of these hexagons would hit an occupied or unknown hexagon 

during movement, the transition function will indicate this action will fail. The mask can be 



43 
 

increased to guarantee no collisions will occur.  

 

Figure 4.7: The dark grey hexagons represent the robot mask, and the light grey hexagons show 

the required free cells for the ‘forward’ action to succeed. The white hexagon in the centre of the 

robot is used to represent its state.   

 

4.5.2  Local Coordination 

The candidate solution managed to mitigate local interactions, almost never interacting 

beyond the starting location as long as the robots can communicate when they are near each 

other. However, two scenarios may cause the robots to interact. 

Firstly, communication may fail entirely, causing the robots to collide. Since there is no 

way for the robots to realize there is another robot nearby (short of computer vision or other 

sensors), the robots will rely on anti-collision systems (e.g. lidar, bumper sensors) to prevent and 

react to collisions.  

Secondly, if the robots need to get close to one another to pass through a doorway or 

narrow passageway and can communicate, a local coordination strategy should be employed. 

[25] uses a multi-agent MDP [39] to coordinate the robots. This results in a variety of behaviours 

depending on the situation, such as the robots following each other through a narrow corridor, or 

a robot freezing or backtracking to allow another robot to pass. For real operation, this method or 

another local coordination method will need to be employed.  
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4.5.3 Realistic Mapping 

 Currently, the implemented algorithm does not dynamically increase the map size if the 

robot encounters an area beyond the initial map size. Also, it assumes ideal mapping in that the 

sensors have no noise and completely scan an area. For real operation, a realistic mapping 

technique would need to be implemented. However, this would also require a more robust map 

merging strategy. Many algorithms for map merging exist, so it is necessary to choose an 

appropriate algorithm. Finally, the code would need to be updated such that the map dynamically 

increases in size when the robot encounters an area beyond the original estimated map size.  

 Several modules already exist in ROS for realistic mapping and map merging, such as 

gmapping [42] and multirobot_map_merge [43]. These should replace the written code as they 

are more realistic and robust.  

 

4.5.4 Parallelization 

Currently, all the code is synchronous and sequential. The first robot communicates to the 

second, which updates its map, then the second communicates to the first robot, which updates 

its map. Then the first robot calculates its value function, moves, and scans its new environment. 

Then the second robot does the same. This is unrealistic for two reasons. 

Firstly, it would be inaccurate to assume that the robots are working synchronously, as in 

real operation each robot would have an onboard computer. Since the robots would not be 

synchronized, the code must be changed to account for the fact that communications from other 

robots may come at any time. This is simplified in ROS since ROS has powerful libraries for 

distributed computation.  

Secondly, mapping, moving, and decision-making for each robot should be separated into 

independent threads as described by the candidate solution [10]. This allows each robot to move 

and scan simultaneously while also continuously computing its value function. This should speed 

up the computation by making use of parallel processing.  

 

4.5.5 Moving to ROS 

 To create realistic simulations in three-dimensional environments, as well as complete 

implementation for real robots, this algorithm should be implemented with the Robot Operating 
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System (ROS). The current implementation has been designed to be sufficiently modular that 

several sections can be replaced entirely by ROS modules, such as mapping being replaced by 

gmapping [42] and map merging being replaced by a module such as multirobot_map_merge 

[43]. Other aspects will also have to be changed to connect with the robots’ sensors and 

actuators, including scanning and movement. However, the core algorithm should not have to be 

changed as it is a high-level decision-making algorithm that calculates the value function on the 

hexagon layer. Since ROS is compatible with Python 2.7, which was used to program this 

implementation, major sections of the currently implemented code should be able to be ported to 

ROS without change.  

 

4.5.6 Adapting the Algorithm for USAR Scenarios 

 The candidate solution is designed for general multi-robot exploration, not specifically 

for USAR. The solution could be adapted to not only explore the area but focus on finding 

victims. This can be done by increasing the reward near potential victims. These victims may be 

identified through various methods in a complete implementation, such as computer vision. The 

algorithm will then increase the reward around potential victims such that the robot approaches 

sufficiently close to make a positive identification. Other tasks may also be created, such as 

speaking with targets or communicating information back to human crisis managers. The 

requirements of the USAR algorithm will depend on the situation and robot capabilities. The 

candidate solution can be modified with relative ease for new tasks if the tasks can be defined or 

encouraged by changing rewards, such as approaching victims. Tasks that require more than 

modifying the reward function would be difficult to implement with the candidate solution.  
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5  Conclusion 

 Multi-robot teams have the potential to greatly assist in urban search and rescue 

operations [2, 3]. Many algorithms have been proposed to coordinate robots to efficiently 

explore; however, the challenges involved in real USAR render many of these algorithms 

inadequate. In section 2  Literature Review, the field of multi-robot exploration and 

coordination was reviewed and an algorithm [25] appropriate to the limited communication 

found in USAR [22] was selected. In section 3 Design and Implementation, this algorithm was 

implemented in a grid world in Python. By combining a decentralized decision-making 

architecture with an implicit coordination strategy, the algorithm effectively coordinates teams of 

robots regardless of communication limitations. It uses a Markov decision process planning 

approach with positive rewards near frontiers and negative rewards around known and predicted 

locations of other robots to maximize the area searched while minimizing exploration overlap.  

Experiments with multiple levels of communication in section 4 Results and Discussion 

demonstrated that the chosen algorithm explores faster than a naïve approach when it can 

communicate with nearby robots. Additionally, the algorithm greatly reduces the number of local 

interactions between robots in all communication levels. Due to its simplicity, scalability to 

larger teams, and robustness to communication failure, this algorithm will serve as a benchmark 

against which to compare future multi-robot USAR research. The next steps for this research are 

to implement the algorithm in the Robot Operating System for more realistic simulation and 

eventual deployment on physical robots. 
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